Creating and Debugging a Basic Script for WebCenter Enterprise
Capture

Many customers using Oracle Document Capture 10g have customized their capture and index profiles
using custom scripts written in VB. Since the release of WebCenter Enterprise Capture, these scripts are
no longer compatible with the latest version of the software. WEC 11g now has a brand new API for
customizations and scripts are written in JavaScript. For customers looking to upgrade, this means
evaluating their scripts, deciding which are still needed and how they should be revamped using the 11g
APIs.

Unfortunately, since WEC 11g is still relatively new, there is not a lot of help out there beyond Oracle’s
documentation and a few sample scripts in Oracle Knowledge Base. This article walks you through how
to create a simple script using the new APIs and using the Java console to debug it.

Goal: Create a script to default a field value for a particular client profile.

ODC 10g had the ability to default a field value based on the Index Profile used. This was very useful as
often times a File Cabinet contains multiple scan and index profiles and a particular field’s value may
vary depending on the profile used.

Manage Index Profiles @

Index Profiles:

- Generall Filterl Elptic-nsl Fields] Field Properties | Separator Sheet Auto Populate]
Test Index Prafile

Avwailable Fields:

Settings:
Data Source
" None
" ScanDate | J
" Index Date | J

D

Default'alue [SCAN
(" Batch Mame

" UserID

Mew Save Delete Cloze

WEC 11g does have the ability to auto populate values, however this is done only at the metadata level.

http://docs.oracle.com/cd/E29542_01/doc.1111/e28275/toc.htm
http://docs.oracle.com/cd/E29542_01/doc.1111/e28275/toc.htm

Security | Metadata ' Classffication | Capture | Processing | Commit | Advanced

Metadata Fields + 7 X
Name Field Type Max Length |Required | Locked |Display Format |Input Mask |Auto Populate
DataSource Alpha Numeric | 0 No No (none)
Organization Alpha Numeric |25 No No Default Value
ScanDate Date No No yyyy/MM/dd Scan Date

This article will demonstrate how to create a simple script that defaults a value for every document in
the batch based on the client profile used. Oracle knowledge base provides a similar script that defaults
a value when a document is selected (KB article 1639684.1).

wvar CODER FIELD = "Coder"; // The name of the coder metadata field
function DocumentSelected(event) { // DocumentSelectedEvent
var document = event.getDocument();
var batch = document.getParentBatch();
var fieldDef = batch.getWorkspace () .getFieldDefinitions () .findByName (CODER FIELD) ;
if (fieldDef != null) {
var fieldId = fieldDef.getId();

var fields = document.getFields();

var field = fields.get (£1eldId);

// Set the field walue to the logged-in user

field.setValue (Capture.getCurrentUsexr () .substring(0,5));

// Sawve the document data

document .persist () ;

The issue with this script is that since it fires on the Document Selected event, it requires that a
user manually open every document in a batch in order for the value to be defaulted for that document.
In some scenarios, this might be the only field that is captured by WEC, meaning there are no other
fields to be indexed. This often happens for integrations with Forms Recognition; where only a few
select values are captured at scan time, such as Organization, and the rest are extracted using Forms
Recognition.

Writing the Script

Using the Oracle provided script as a basis; we create a new js file for our script. The script shown here
will default a field called “DataSource” with a value of “SCAN”.

Begin by setting the global variables for the script, the name of the field and the default value for that
field.

var DATA SOURCE FIELD = "DataSource"; // The name of the Data Source metadata field
var DATA SOURCE VALUE = "SCAN'"; //Default value for the Data Source field

Looking through the available client events, the Batch Selected event will provide the needed
functionality. Looking through the API, the batch object can be obtained from the event parameter.
From the batch object, we can use the getDocuments () method to retrieve the documents in the
batch.

var batch = event.getBatch();
var batchDocsVector = batch.getDocuments() ;

The getDocuments () method returns a CaptureDocuments object which is actually a Vector of
CaptureDocuments. After some trial and error, | found that the simplest way to manipulate the
documents is to convert the vector into an array.

var batchDocs = batchDocsVector.toArray() ;

From there, just as in the Oracle sample script, get the fieldDefinition andthe fieldId. Next,
loop through the documents in the array. For each document, get the desired field and set it to the
default value, just as shown in the sample script.

var fieldDef =
batch.getWorkspace() .getFieldDefinitions () .findByName (DATA SOURCE FIELD) ;

if (fieldDef '= null) {
var fieldId = fieldDef.getId()

for(var i=0; i< batchDocs.length; i++)
{

//get the Document

var doc = batchbDocs[i];

//get the field
var fields = doc.getFields() ;
var field = fields.get(fieldId) ;

// Set the field value to the default value
field.setValue (DATA SOURCE VALUE) ;

// Save the document data
doc.persist (),

Putting it all together, the script looks like this:

"DataSource"; // The name of the Data Source metadata field
"SCAN"; //Default value for the Data Source field

var DATA SOURCE_FIELD
var DATA SOURCE_VALUE

//This functions sets the default value for all documents in the batch when the batch is
selected
function BatchSelected(event) { // BatchSelectedEvent

var batch = event.getBatch();
var batchDocsVector = batch.getDocuments() ;
var batchDocs = batchDocsVector.toArray() ;

var fieldDef =
batch.getWorkspace () .getFieldDefinitions () . findByName (DATA SOURCE FIELD) ;

if (fieldDef !'= null) {
var fieldId = fieldDef.getId()

for(var i=0; i< batchDocs.length; i++)

{
//get the Document
var doc = batchDocs[i];

//get the field
var fields = doc.getFields();
var field = fields.get(fieldId);

// Set the field value to the default value
field.setValue (DATA SOURCE VALUE) ;

// Save the document data
doc.persist();

Configuring the Workspace

Next, configure the script in the workspace. Log into the Capture Console. In the desired workspace,
create a new script in the Advanced tab.

Type: Capture Client

Name: <choose a name>

Description: <enter a description>

Script File Name: select the js file you created

Script: New Script | Cancel | submit
* Type: | Capture Cient =]
* Name: | SetDefaultvalueByClentProfie |
Description: | Sets a Default Value for the Data S|

* Script File Name: | SampleWECMacro-SetDefaultValueByCaptureProfie js

After saving the script, the next step is to assign it to a client profile. In the Capture tab, open an existing
client profile, or create a new one. The Profile Type can be either “2 - Capture and Index” or “3 — Index
Only”. On the Extension Profiles train stop, add the script you just created.

Description: <enter a description>
Extension Type: Capture Java Script Extension
Script: <select the script you just created>

* Description: | Default Data Source field to "SCAN |
* Extension Type: | Capture Java Script Extension [¥ |
Script: | SetDefauktValueByClentProfie [v |

Be sure to save the changes. It's now time to test the script.

Testing the Script

Log into the Capture Console. Create a batch and open it for indexing using the client profile you
configured in the section.

Look In: .ﬁl.magesfnrtesthg v @ @ @

[5::an Invoices - OFR '] Capture %’
| & 006_aramarkB3lw03_204_20140315.TIF Cisco 17934692.TF
006_aramark33iw03_204_20140315.TIF.TIF Cisco 17934721 1of2.
007_aramark3c784wxmi23iw03_204_20140415.TF.TF.TF Cisco 17934721 2072,
007_aramarkB3lw03_204_20140415.TIF.TIF Cisco 17934721.TF
008_cisco 925823_204_20140415.TIF. TIF.TIF Cisco 17942892 10f1.
O Create one document for all import files [« T T
@ Create one document per import file
File name:
| Hep | [OK] | cancel | Fies of Type: | Al fles B

Rotaton: (&) 0 ()80 () 180 () 270
D Delete source files after import

[Heh H oK J[Canoe|]

Since the batch is automatically selected after the scan/import is completed, the BatchSelected
event will fire automatically after the scan/import is done. You can see that the script has completed
successfully by looking at the metadata assigned to a document in the batch.

Batch / Document | Date / Time | ttems | Status | Priority | Note
B w23 520414 2:43:09 P]]
w24 52014 2:44:18 PM]]

VB N2 5/30/14 8:53:04 AM 3]

D Document 1

D Document 3

- =

Document Profile | OFR Index | ™

Organization

204

DataSource

SCAN

To thoroughly test that the script is working correctly, first configure the commit profile to include the
new field with the exported metadata. In the case of exporting to WFR, this will be part of the file
name, so below the DataSource field is added to the Document File Name.

Commit Profile: OFR Commit
o

Cancel

Gereral Setings Commit Driver Settings Document Output Seffings

Commit Driver Settings

Specify commit driver configuration. Click Next to continue.

Text File Folder | Document Folder

Formatting | Document File Naming

Back

Next | Submit

Document File Naming Option:

Name document file based on metadata field values

m

Fields to Include in Document File Name: Available Fields: Selected Fields:
[|ScanDate = [] <Batch ID=> T
En:eB:tCh - Move Ebﬁ Document
[] =Batch [[] Organization =
Status> ~ | MoveAl |[]<Batch
B <Batch Creation Date> -
Priority = $ ’

[l ﬂgatch Remove |I DataSource .
Creation User
D=
Remove Al
[] «Batch Last
Modified Date=> -

Field Delimiter:

(@ Remove invalid characters
() Cancel document commit

If File Name Consists of Invalid Characters:

Ttems Linked to Multiple Pages: [] Create a copy for each page

After configuring the export in the workspace, log back into the Capture Console. Scan or import
another document using the same client profile. After scanning, immediately release the batch without
looking at the documents individually. Browse to the location where the committed documents are
placed. The file names of the images should all have “SCAN” as one of the elements.

31_22d3cad8-a5a

e-4188-a270-bb?
a’6687afe_2014
05150_SCAMN.tif

31 059a4a78-849

0-4f9c-978c-d11

50p871fc3_2014
05150_SCAMN.tif

Debugging with the Java Console

31_538a68cd-f99

0-48ec-bbfl-bea

e55e7es7f_2014
05150_SCAN.tif

When writing scripts, it is useful to be able to trace the code as it is being run to verify that it is being
executed as expected. WEC 11g scripts provide the ability to do this by writing to the java console. To
add tracing to your script, simply call the print1ln method.

println("SampleWECMacro: batchDocs size: " + batchDocs.length);
for(var i=0; i< batchDocs.length; i++)
{

println("SampleWECMacro: Getting document " + i);

To see the output, you must enable the Java Console on the machine you are running the Capture Client
from. On Windows 7, open the Java menu from the Control Panel. In the Advanced tab, Enable tracing
and logging under the Debugging section and choose to Show console under the Java console section.

|£ | Java Control Panel

| General | Java | Security| Advanced I_

Debugging
----- Enable tracing

----- Enable logging
----- Show applet lifecycle exceptic

Java console

) Hide console
() Do not start console

To enable the console, you must close the browser completely and reopen it. The next time you open
the Capture Console, the Java Console will pop open automatically.

| = | Java Con

dl Javd.aWl. .

at java.awt.EventDispatchThread.run(Unknown Source)
network: Cache entry not found [url: http://imaging.us.oracle.com:164
network: Connecting http://imaging.us.oracle.com:16400/dc-client/jer:
network: Connecting http://imaging.us.oracle.com:16400/dc-dient/jer:
cache: http://imaging.us.oracle.com:16400/dc-client/jersey/oddcClient
DEBUG: Bundle oracle.oddc.client [12] oracle/oddc/session/jaxb.proper
basic: JNLP2ClassLoader.findClass: org/netbeans/swing/etable/Bundle:
basic: JNLP2ClassLoader.findClass: org/netbeans/swing/etable/Bundle_
DEBUG: Bundle oracle.oddc.client [12] org/netbeans/swing/etable/Bunt
basic: INLP2ClassLoader.findClass: org.openide.awt.HtmlIRenderer: try
basic: INLP2ClassLoader.findClass: org.openide.awt.HtmlRenderer: try
network: Cache entry not found [url: http://imaging.us.oracle.com:164
network: Connecting http://imaging.us.oracle.com:16400/dc-dient/jer:
network: Connecting http://imaging.us.oracle.com:16400/dc-dient/jer:
cache: http://imaging.us.oracle.com:16400/dc-client/jersey/oddcClient
DEBUG: Bundle oracle.oddc.client [12] oracle/oddc/session/jaxb. proper
network: Cache entry not found [url: http://imaging.us.oracle.com:164—

s

< [3

[Clear] [Copy] [Close]

Scan a document again. This time, you will see the tracing lines from the script in the Java Console
output.

SampleWECMacro: Entered BatchSelected Event.

SampleWECMacro: batchDocs size: 5

SampleWECMacro: Getting document 0

DEBUG: Bundle oracle.oddc.client [12] oracle/oddc/session/jaxb.propet
network: Connecting http://imaging.us.oracle.com:16400/dc-client/jer:
network: Connecting http://imaging.us.oracle.com:16400/dc-client/jer:
SampleWECMacro: Getting document 1

network: Connecting http://imaging.us.oracle.com:16400/dc-client/jer:
network: Connecting http://imaging.us.oracle.com:16400/dc-client/jer:
SampleWECMacro: Getting document 2

network: Connecting http://imaging.us.oracle.com:16400/dc-client/jer:
network: Connecting http://imaging.us.oracle.com:16400/dc-client/jer:
SampleWECMacro: Getting document 3

network: Connecting http://imaging.us.oracle.com:16400/dc-client/jer:
network: Connecting http://imaging.us.oracle.com:16400/dc-client/jer:
SampleWECMacro: Getting document 4

network: Connecting http://imaging.us.oracle.com:16400/dc-client/jer:—
network: Connecting http://imaging.us.oracle.com:16400/dc-client/jer: ™
< |1 b

l Clear l [Copy] l Close l

This can be an invaluable tool for creating and debugging new Capture scripts. While the APIs are fairly
straightforward, it is always useful to be able to trace through what is actually happening and being
executed, especially when methods don’t function exactly as expected.

